

H2Valley

Pioneering Natural Hydrogen (H2) and Helium (He) Exploration and Extraction

H2Valley - home

CEO, Founder: <u>Sergey.Frolov@h2valley.tech</u>

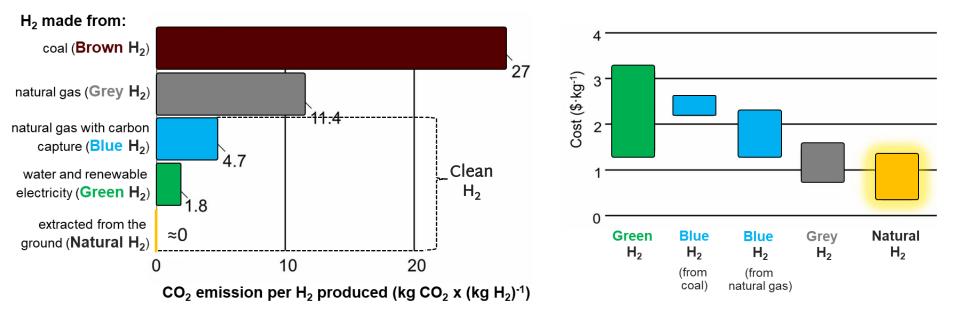
mob. + 90-534-285-97-04

Introduction to H2Valley

We are

Geological H₂ is inexhaustible, clean and most efficient

We use unique and proven geological model


professionals in exploration and extraction of GEOLOGICAL HYDROGEN* AND HELIUM significantly cleaner and more efficient than green and blue hydrogen revealing **inexhaustible and abundant** H₂&He resources at low exploration and extraction costs

Natural H₂ is Cleaner and The Most Efficient

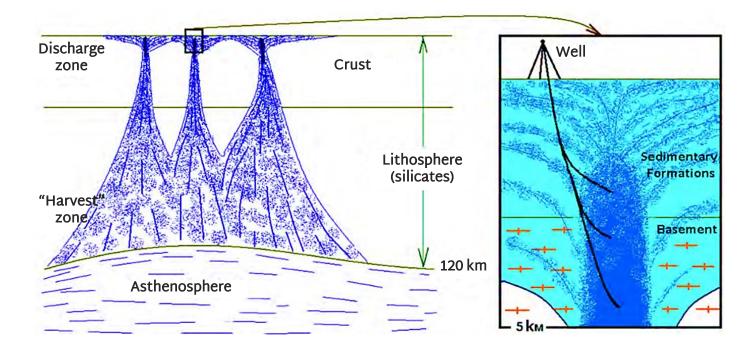
Carbon footprint comparison (2021)

H₂ estimated cost in 2050

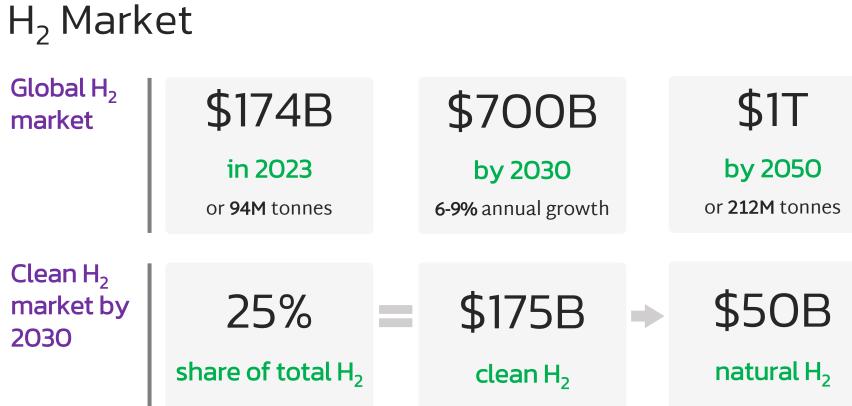
Unique and Proven Geological Model

One of our founders, Nikolay Larin, drilled the

FIRST DESIGNATED H₂&He WELL


as a chief geologist of the legal entity operating the Hoarty-3 well in Nebraska, USA

This well, drilled in 2019, marked a historic milestone in successful exploration and extraction of natural H₂&He



Our Geological Model for Extraction

He Market

Semiconductor industry will drive the market

Global He market

\$2,3B	\$3,4B	\$6B
in 2022	by 2030	by 2035
or 29k tonnes	or 34k tonnes	or 57k tonnes

Target H₂ Customers

Chemical Manufacturers

such as Yara (ammomia) and Methanex Corp. (methanol) are looking for low-carbon alternatives of natural gas and coal

Steel Manufacturers

such as ArcelorMittal, and thyssenkrupp, need clean hydrogen to decarbonize operations lowering natural gas and coal consumption

Refineries

such as **BP** and **Shell**, shifting toward cleaner operations replacing grey and green H₂

Energy Companies

such as EDF, Enel and Duke Energy, could use natural H₂ for power generation and grid balancing during the time when there is no wind or sun

Target He Customers

Medical & Healthcare

Medical, Imaging centers and hospitals consume He mainly for cooling in MRI machines

Aerospace

such as NASA, ASA, CNSA, ISRO, JAXA and Space X use He for cooling rocket fuel and pressurizing fuel tanks

Electronics & Electrical

such as Intel and TSMC use He for cooling and as an inert environment in fabrication processes, CERN uses He for cooling super conducting magnets

Metal Fabrication

Metal processing companies use He as an inert atmosphere in specialized welding applications for metals like aluminum and titanium

Industry Problems

Unaffordably high electrolysis costs

Green H₂ production is hindered by high costs due to inefficient process – 1 kg of H₂ consumes 55 kWh but it yields only 33 kWh

High costs of carbon capture

Blue and turquoise H₂ production relies on carbon capture technology, which is expensive and unreliable (leaks)

Limited nuclear energy availability

Pink (or purple or red) H₂ production depends on nuclear energy, which faces challenges related to availability and safety

High costs of carbon footprint

Gray, black, and brown H₂ production relies on fossil fuels, leading to greenhouse gas emissions, covered by carbon credits

Lack of H₂ infrastructure

prevents the widespread adoption of hydrogen as a fuel source

Helium supply scarcity

due to lack of exploration, depleting existing reserves and geopolitical turbulence leading to drastic price volatility (by 2-4 times)

Clean H₂ Projects Challenges

Green H₂ project delays and cancellations

due to:

- huge investments,
- extremely energy inefficient production process leading to high costs,
- lack of infrastructure
- and decreasing government incentives

Money wasted on natural H₂ random drilling

due to:

- misleading geological concepts (serpentinization and biogenesis)
- and lack of natural H₂ exploration and extraction know-how

leading to unsuccessful drillings and mistrust from investors and industrial community

Business Opportunities

Extremely high margin and sustainable H₂&He business

with cost-effective business model of natural H₂&He extraction, based on unique and PROVEN GEOLOGICAL MODEL capitalizing on the opportunity to discover natural H₂ in almost every country

Bringing clean H₂

to every consumer

Skimming clean H₂&He markets

satisfying booming H₂&He market demand in different countries with a highest margin as a new industry pioneer

H2Valley's Proven Solution

Lower investments and costs

Our approach lowers CAPEX (by 30-50%) and OPEX (cash costs: natural H₂ – about \$1/kg, green H₂ – \$4-10/kg and blue H₂ – \$2.3-4.5/kg)

Extremely valuable helium

with 2-4% concentration, \$90 market price and \$12 cash cost (87% margin profit) BOOSTS PROJECT'S NET PROFIT BY 3-5 TIMES!

Competitive pricing

We aim to sell H₂ at the market price of \$3/kg – NO NEED FOR STATE COMPENSATION compared to significantly more expensive green H₂

Infrastructural independence

Our model allows finding natural H₂ sources as close to consumers as possible, improving their businesses' bottom-line

Sustainable Business

People

Natural H₂ projects decrese social and countries' disbalance and serve as responsible and sustainable partners to local busineses

By utilizing geological hydrogen, natural H₂ projects reduce carbon-intensive production methods and contribute to a cleaner energy future

Profit

Natural H₂ projects create long-term value for investors and partners by delivering highly profitable, globally scalable and the environmentally cleanest H₂

Contibution to UN Goals

Natural H₂ supports clean ammonia production for fertilizers, reducing emissions. It also enables single-cell proteins and edible oils to boost global food security

Clean water production is a

by-product of many natural

H₂ usage applications,

supporting sustainable

water access and

management

Clean

Water &

Sanitation

6 CLEAN WATER AND SANITATION

Natural H₂ supports decarbonization by substituting fossil fuels and capturing environmentally hazardous natural hydrogen seepage

in almost all corners of the world, decentralizing and enhancing energy security. Natural H₂ storage can stabilize renewable energy grids

H2Valley's Competitive Advantages

H2Valley's advantages

Geological basis

- Operating the **proven and working** geological model
- **First to explain** the natural H₂ phenomenon

Competitors' disadvantages

Use **unproven and misleading** geological models, based on hypotheses

Natural H₂ exploration experience

- Our founder **drilled the first designated** H₂ well in the USA (Nebraska) in 2019
- Company founders have positive exploration results – H₂ sources identified in the USA, Mongolia, Morocco, India, Oman, Australia and Egypt

- Lack of natural H₂ positive exploration experience
- Use Oil&Gas algorithms not suitable for natural H₂
- Wasted random drilling without results

Costs Comparison for 15,000 tonnes/year Clean H₂ Production Project

Type of the H ₂ Project	Initial investments	Operating cash costs (per 1 kg H ₂)
Blue H ₂ production	\$110 – 190M	\$2.3 - 4.5
Green H ₂ production	\$160 – 265M	\$4 - 10
Natural H ₂ extraction by competitors	Unpredictable due to using	misleading geological concept
Natural H ₂ extraction using H2Valley's proven geological model	\$50 – 65M	About \$1

Sources: S&P Global, Bloomberg, Company data

Case Study: JV with Industrial Partner

Location	H2Valley identifies H ₂ &He-rich sites globally near H ₂ consumers (off-takers)
Consumer	Large Industrial company (business partner) seeking affordable H ₂
Project Structure	Joint venture where H2Valley explores and extracts H ₂ &He using partner's (or banks'/investors') financing with a long-term H ₂ offtake agreement
Outcome	Annual extraction of 12-18k tonnes of H₂ and 350-500 tonnes of He (1%) from 7 wells (1 geo-structure)
Financials	\$50-65M CAPEX, \$80-120M annual revenue, 70% EBITDA margin, \$160-340M NPV (12% discount rate), 4-6 years DPP from the start of investments

Standard Project Initiation

Use of proceeds **Funding stage** Results project company legal project legal entity **PRE-SEED** setup • project team • staffing • pre-feasibility report \$2-2.5M geological surveys • exploration license field research pre-feasibility study • marketing • staffing • feasibility report SEED geophysics drilling license

geochemistry

marketing

feasibility study

Timeline

5-7 months

5-7 months

- \$4-5M
- The exact numbers depend on location of the project